纯铁和耐热钢在1000~1200C真空稀土钨和稀土钼共渗动力学研究结果表明[41-42],稀土的加入使渗钼和渗钨层的厚度提高15~20%,渗层组织为柱状晶;改性层的抗烧蚀和冷热疲劳性能显著提高。电子探针结果指出,稀土的渗入深度与柱状晶层厚度相当。组织观察发现,冷热循环过程中柱状晶层并不发生在结晶,并且靠近柱状晶层的晶粒被显著细化。关于稀土加快置换式原子扩散的机制及其作用机理尚有待渗入研究。Cl8热处理技术网 — 热处理行业的超级智库 CHTE 最全的热处理技术信息网站 热处理技术网 CHTE
用仿形积分、有限差分和解析方法建立了常规和稀土渗碳、渗氮、渗金属等过程的数学模型,包括表面浓度增长、增重和渗层厚以及渗层中浓度分布的数学模型;获得了传递系数的计算方法同时也推导出了扩散系数计算的理论模型。基于上述数学模型[9,41-53],对稀土渗碳、渗氮渗钼和渗钨等过程渗入元素的分布进行了计算机数值模拟,仿真结果与实测结果相吻合。Cl8热处理技术网 — 热处理行业的超级智库 CHTE 最全的热处理技术信息网站 热处理技术网 CHTE
化学热处理可以概括为3个元过程:①渗入元素活性原子的产生与供给;②界面反应与渗入原子的传递;③渗入原子在钢中的扩散。大量试验和计算提供的数据证明,稀土在化学热处理的三个元过程均扮演了重要角色,现简述如下。Cl8热处理技术网 — 热处理行业的超级智库 CHTE 最全的热处理技术信息网站 热处理技术网 CHTE
(1)稀土促进渗入介质的分解[54-56] 以渗碳为例,在滴注式和吸热式可控气氛中加入稀土,在其它条件不变的条件下,借助氧探头可以观察到炉气碳势被明显增高10~20%。废气燃烧颜色也有明显变化,由加入前的淡青色向加入后的浅桔黄色变化。炉气分析指出,这与炉气中的甲烷含量和一氧化碳相应增高有关。炉气中甲烷含量适度增加与炉气碳势的提高,有助于渗碳速度的提高。基于炉气分析数据,计算了08F钢在900C的滴注式气氛中有无稀土添加时的表面碳活度,结果表明,稀土添加使表面碳活度提高25.9%。Cl8热处理技术网 — 热处理行业的超级智库 CHTE 最全的热处理技术信息网站 热处理技术网 CHTE
(2)稀土强化界面反应[57-58] 化学热处理过程中渗入介质与工件表面的界面反应是一个复杂的物理化学过程,用传递系数来表征界面反应的综合结果,即扩渗元素由气相向工作表面传递的能力,它应是浅层化学热处理过程的控制因素。计算结果表明,稀土的添加明显提高传递系数增大。例如,20钢在900C碳势1.10%下气体渗碳过程中,稀土添加使提高117%。实际上,稀土原子渗入Fe的表面后,引起周围Fe点阵的畸变,使Fe原子的表面能急剧上升,增加了捕捉C、N、B等原子的驱动力,从而使值度增大。Cl8热处理技术网 — 热处理行业的超级智库 CHTE 最全的热处理技术信息网站 热处理技术网 CHTE
(3)稀土促进原子的扩散及其微合金化[59-62] 渗层的薄厚与扩散元素在钢中的扩散系数D有关。按渗入元素浓度分布或渗层曾厚动力学数据进行计算,可以获得渗入的稀土原子对扩渗元素扩散系数的影响。用Matano方法计算了8620钢在900C碳势1.10%条件下渗碳表层中碳的扩散系数,稀土添加较无稀土添加的扩散系数提高50%以上。Cl8热处理技术网 — 热处理行业的超级智库 CHTE 最全的热处理技术信息网站 热处理技术网 CHTE
前已叙及稀土在共渗过程中能够渗入钢的表面,并沿晶界、缺陷等特殊通道以较快速度向内部扩散,不仅建立起由表及里的浓度梯度,同时也建立起晶内与晶界的浓度梯度,稀土原子在由表及里扩散的同时,也会由晶界通过空位向晶内完整晶体部份扩散,这样晶体内部必有微量稀土。能量计算指出,大原子半径的稀土只能以单个原子或双原子的方式经过空位进行扩散,因而只能在完整晶体内部形成稀土的稀固溶体。这是稀土在共渗过程中往钢中扩散的模式及分布形态。由于稀土原子周围的Fe点阵发生畸变,C、N、B等间隙原子将在畸变区偏聚,从而形成气团,当这些原子在化学位的驱动下挣脱气团后将会沿这个特殊的通道向前快速扩散,使扩散元素的扩散系数提高。当气团中的C、N、B等达到一定浓度时又将成为化合物形核的核心,进而沉淀析出细小弥散的碳氮化合物,从而细化渗层组织,改善渗层各种性能,这就是稀土改善微观组织和提高渗层性能的微观机制。Cl8热处理技术网 — 热处理行业的超级智库 CHTE 最全的热处理技术信息网站 热处理技术网 CHTE
3/7 首页 上一页 1 2 3 4 5 6 下一页 尾页
|