加入收藏 | 设为首页 | 会员中心 | 我要投稿 | RSS
·2022年宁波热处理学会各级热处理工培训通知 ·关于开展20周年庆表彰评选活动的通知·热处理技术网投稿指南 ·宁波市热处理学会会员入会须知·会员用户完善注册信息通知 
站内搜索: 高级搜索
您当前的位置:首页 > 行业资讯 > 趋势分析

轴承用钢及发展趋势

时间:2010-09-26 13:38:44  来源:热处理技术论坛  作者:
1.低碳钢渗碳、渗氮及碳氮共渗
渗碳是传统的表面化学热处理工艺,渗碳钢(低碳低合金钢、低碳高合金高温渗碳钢)经渗碳淬火后表面高硬耐磨、心部强韧。渗碳工艺发展一方面是渗碳介质的改进,如加入增加渗速的添加剂,采用强渗--扩散的交替循环工艺提高渗速、改善渗层组织等。
随着真空技术的发展,出现了真空低压渗碳及等离子渗碳。易普森等公司[23]开发的乙炔低压渗碳工艺是在10mbar以下的低压下,以乙炔为渗碳介质在真空炉内进行。其特点是渗速快、渗层均匀、碳黑少、渗后工件光亮;另外,对渗层要求较薄的冲压滚针轴承类零件碳氮共渗或渗碳而言,渗层深度、成分的控制及如何提高渗速更是一大难题,采用真空低压渗碳技术将有利用解决这些问题。
对高合金渗碳钢进行等离子渗碳可提高渗速、减少表面粗大碳化物的形成[24]。对低碳钢制滚针轴承内外圈及保持架采用渗氮或碳氮共渗,可提高其耐磨性及耐蚀性、降低摩擦系数。
 
2.高碳铬轴承钢的渗碳或碳氮共渗
高碳铬轴承钢一般是整体淬硬,淬后的残余应力为表面拉应力状态,易造成淬火裂纹、降低轴承的使用性能。通过对其进行渗碳、渗氮或碳氮共渗,提高表层的碳、氮含量,降低表面层的Ms点,在淬火过程中表面后发生转变而形成表面压应力,提高耐磨性及滚动接触疲劳性能[25,26]。最近的研究还表明:高碳铬轴承钢经渗碳或碳氮共渗后还可提高轴承在污染条件下的接触疲劳寿命[25~27]。一般,在淬火加热时,通过控制气氛的碳(氮)势,可达到以上目的。但如果对高碳铬轴承钢进行超常渗碳(碳势>2%),则必须加大加工余量,去除渗碳淬火后表层的粗大碳化物。
 
3. 工艺控制
渗碳(渗氮或碳氮共渗)气氛的检测和控制是关键参数,最早是采用露点仪、CO2红外分析仪,目前主要采用氧探头来检测碳势(或氮势),其反应速度快,可进行实时监控,配合CO2红外分析仪或其他测量措施(如易普森开发的HydroNit探头[28])可对碳势(或氮势)实行精确控制。
工艺控制的另一方面是渗碳(渗氮或碳氮共渗)过程的计算机模拟控制。碳在钢中传递和扩散的计算机模拟开始于20世纪80年代,之后进一步开发了人机对话软件(Carb-o-Prof),使人们可以现场计算不同钢种在渗碳过程中任一时间碳的传递与扩散速度。该软件考虑了温度、碳势等工艺参数变化的影响,可以实现所需的表面碳含量及渗层深度的工艺参数的计算,并能根据工艺过程中的参数发生的变化或出现的干扰自动调整碳势、渗碳时间等工艺参数,以达到工件预定的要求。最近,又推出了“Carb-o-Prof-Expert”专家系统。该软件集成了大多数渗碳钢及渗碳淬火的物理冶金知识、设备性能、工件的技术要求等数据,只要向计算机输入工件的钢种、重量、几何尺寸、淬透性、渗层要求及炉型等数据,计算机便会输出一个渗碳工艺,并自动实现该工艺[29]。
 
表面改性技术
1.离子注入
离子注人与其他表面强化技术相比,具有以下的显著优点:(1)离子注人后的零件,能很好地保持原有的尺寸精度和表面粗糙度,不需要再做其它表面加工处理,很适合于航空轴承等精密零件生产的最后一道工序;(2)原则上不受冶金学或平衡相图的限制,可根据零件的工作条件和技术要求,选择需要的任何注人元素,注人剂量和能量,获得预期的高耐磨性或耐腐蚀性等特殊要求的轴承表面,灵活性大,实用性强,对基体材料的选择也可以适当放宽,从而可节省贵重的高合金钢材和其它贵重金属材料;(3)注入层与基体材料结合牢固可靠、无明显界面,在使用中不会产生脱落和剥皮现象,这对提高轴承寿命和工作可靠性来说非常重要;(4)离子注人是一个非高温过程,可以在较低的温度下完成,零件不会发生回火、变形和表面氧化;(5)具有很好的可控性和重复性。欧美等国对离子注入进行了大量的研究[30~37]。
美国海军实验室从1979年起进行了轴承零件离子注入的研究,英国、丹麦和葡萄牙等国从1989年开始进行与美国海军实验室类似的工作。结果表明:注入铬离子能显著提高M50钢的抗腐蚀性能,而且抗接触疲劳性能也有所提高;此外还用注人硼离子来提高仪表轴承的抗磨损能力;对轴承钢52100进行氮等离子源离子注入(PSⅡ)后在表面形成薄层氮化物,可提高轴承钢的耐蚀性,用于代替昂贵的不锈钢;对SUS440C不锈钢球轴承进行氮、硼离子注入可减小球轴承微小摆动的微振磨损及轴承的灰尘排放,另外,对不锈钢进行(Ti+N)或(Ta+N)等离子体浸没离子注入(PSⅢ)可显著提高其显微硬度、耐磨性和寿命。
 
表面涂覆
表面涂覆技术包括:物理气相沉积(PVD)、化学气相沉积(CVD)、射频溅射(RF)、离子喷涂(Plasma spraying coating, PSC)、化学镀等[38~42]。PVD与CVD相比,其工艺过程中被处理工件的温生低,镀后不需再进行热处理,再轴承零件的表面处理中得到较广泛的应用。100Cr6、440C等钢制轴承零件经PVD、CVD或RF镀TiC、TiN、TiAlN等后,可提高轴承零件的耐磨性、接触疲劳抗力,降低表面摩擦系数。
SKF公司近年来开发了两种涂镀技术:一是采用PVD在轴承套圈及滚动体表面镀硬度极高的金刚石结构的碳(Diamond-Like Carbon, DLC),表面硬度比淬硬轴承钢高40~80%、摩擦系数类似于PTFE或MoS2,具有自润滑特性,且与基体结合良好、无剥落,轴承寿命、耐磨性大幅度提高,在断油的情况下仍可正常工作,被称为“NoWear bearing”[38]; 二是采用PSC在轴承的外圈外圆面喷涂一层100μm后的氧化铝,使轴承的绝缘能力高达1000V以上,通过增加氧化铝的厚度使轴承具有更高绝缘能力。涂镀的氧化铝与基体结合牢固,还可提高轴承的耐蚀性,镀后的轴承(INSOCOATTM bearing)可像一般轴承一样进行安装[39]。
低温离子渗硫是20世纪80年代后期出现的表面改性技术。其基本原理与离子渗氮相似,在一定的真空度下,利用高压直流电使含硫气体电离,生成的硫离子轰击工件表面,在工件表面与铁反应生成以FeS为主的10μm左右厚的硫化物层。硫化物是良好的固体润滑剂,有效地降低钢件接触表面的摩擦系数,且随载荷增大,摩擦系数进一步降低,因此可以大大提高重载下轴承的耐磨性,轴承的寿命可提高3倍左右。
低温磷化与渗硫的作用相似。通过把工件放置于40℃的TAP溶液(磷酸十三烷酸脂)中浸渗4h可在工件表面获得0.05~0.25μm厚的Fe2O3和Fe4(P2O7)3的表面层,降低摩擦系数、提高耐磨性。经磷化的M50钢轴承在短期断油的情况下不出现卡死,提高了轴承的可靠性[36]。
扩散渗铬是用气体方法(粉末法)在850~1100℃进行,时间为1~9h,根据零件所用钢种(ШХ15、95Х18、55СМ5ФА)及性能需要选用相应的温度和时间,在轴承生产及修复中均可使用。渗后扩散层由Cr2(NC)3、(Cr,Fe)23C6及(Cr,Fe)7C3组成,层深16~27μm,硬度1650~1900HV。渗铬并进行常规热处理后,耐热性、耐蚀性、耐磨性及接触疲劳强度均明显提高[42]。
 
2.表面加热淬火
感应加热表面淬火是使用较为广泛的方法之一,原苏联对对这一工艺的理论和生产应用开展了较多的研究[43~48],其主要应用场合分两类:一是铁路轴承的表面感应加热淬火,采用新材料ШХ4钢制的套圈经感应加热淬火后,表面为硬而耐磨的马氏体组织,心部为韧性较好的索氏体、屈氏体,表面为高达500Mpa的压应力,其使用寿命比ШХ15СГ制轴承高1倍,并且完全消除了套圈使用时突然脆断的现象,提高了轴承的可靠性,性能与低碳钢渗碳淬火相似,但成本远低于后者。同时,也开发出相应的专用感应器和淬火设备,并把这一材料及感应淬火的成果推广到要求耐磨和高韧性的轧机轴承等重载轴承;感应加热表面淬火的另一应用是特大型轴承的热处理,减少大型轴承套圈的淬火变形和硬度不均匀性,同时节省设备的投资费用。日本[47]把表面感应加热淬火成功地应用于汽车等速完向节的热处理,包括阶梯轴、壳体内表面及滚道的淬火均由特制的感应圈一次加热完成。高频热处理和冷锻技术的应用使生产成本大大降低,产品的可靠性也大幅度提高。
激光等高能束表面热处理是近年来开发的新的热处理方法[49~50],使用较多的CO2激光束。通过激光加热可获得0.25~2.0mm的硬化层,与其他表面硬化方法相比,其具有硬化层深度及位置控制精确、无变形等优点。高碳铬轴承钢零件经表面激光硬化后淬硬层的马氏体极细小、碳化物分布更均匀、残余奥氏体极少,比一般淬回火具有更高硬度和滑动耐磨性。另外,激光等高能束还可作为表面涂覆工艺的热源,一次可完成表面淬火和涂覆过程,尤其是近年来纳米技术的发展,这一复合工艺过程在精密轴承零件的表面处理中将有广阔的应用前景。

来顶一下
返回首页
返回首页
收藏到QQ书签

【注:本信息除来源为“中国*热处理技术网”外,均来自互联网,由“中国*热处理技术网网友”提供,仅供读者参考。如果有涉及到版权问题,请发邮件到 admin@chte.org ,我们会及时删除或处理。】
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
本文(共有 0 条评论)
内容页广告
最有效信息平台
最有效信息平台
最有效信息平台
得力鑫环保发黑剂
相关文章
栏目热门